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An Efficient Algorithm for Bifurcation Problems 
of Variational Inequalities 

By H. D. Mittelmann* 

Abstract. For a class of variational inequalities on a Hilbert space H bifurcating solutions exist 
and may be characterized as critical points of a functional with respect to the intersection of 
the level surfaces of another functional and a closed convex subset K of H. In a recent paper 
[13] we have used a gradient-projection type algorithm to obtain the solutions for discretiza- 
tions of the variational inequalities. A related but Newton-based method is given here. Global 
and asymptotically quadratic convergence is proved. Numerical results show that it may be 
used very efficiently in following the bifurcating branches and that it compares favorably with 
several other algorithms. The method is also attractive for a class of nonlinear eigenvalue 
problems (K = H) for which it reduces to a generalized Rayleigh-quotient iteration. So some 
results are included for the path following in turning-point problems. 

1. Introduction. In the following we are concerned with the numerical computation 
of critical points of a functional f: H - R, H a real Hilbert space, with respect to the 
intersection of a closed convex set K C H and the level surfaces 

( 1.1 ) asp = { u E H, g(u) = 2 p2} 

of another (even) functional g. For theoretical results concerning existence, char- 
acterization of critical points, and relations to bifurcation theory we refer to the 
literature (see, for example, [1], [15], [19]). Under suitable assumptions a critical 
point uo satisfies the variational inequality 

(1.2) Xo(vg(uo), u-uo) (Vf(uo), u-uo) 'Vu E K, Xo E R, 

and we are interested in the case Xo > 0. 
Instead of treating the most general case we describe a class of such problems 

which is important in physical and mechanical applications. Some examples of this 
type will be considered later. H will denote a function space of functions u defined 
on a domain Q C RN, N - 1, and is usually a Sobolev space Ho7(2), where only for 
simplicity the zero boundary conditions are included. The set K will be either the 
whole space or a subset of the form 

(1.3) K = {u E H, u > O a.e. in C, u < O a.e. in D}, 

where C, D C 2, so that K is in fact a closed convex cone with vertex 0. 
While in the case K = H several algorithms have been proposed for the de- 

termination of the critical points (see, for example, [9] and the papers cited there) 
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and a vast literature deals with the corresponding differential equation problem, the 
theory for the case K 7 H has only been developed recently (cf. [12] and the 
references in [13]). A numerical algorithm was given in [13]. Since this method as 
well as the algorithm to be presented below attack the discretized problem and have 
no simple analogue in the continuous case we shall restrict ourselves to finite-dimen- 
sional Hilbert spaces. 

In [13] the problem of computing bifurcating solutions of variational inequalities 
was reduced to a standard optimization problem. A simple gradient-projection type 
method was used for its numerical solution. In Section 4 we describe a Newton-type 
method for the general problem considered in [13] and show in Section 6 that it may 
be used very efficiently for following the bifurcation branches for variational 
inequalities. Since the method is also attractive for the solution of a class of 
nonlinear eigenvalue problems, we formulate the method for the case K = H first in 
the next section and present some numerical results in Section 5. 

The contents of the following sections are 
2. An algorithm for variational equalities. 
3. Convergence proof. 
4. An algorithm for variational inequalities. 
5. Path following in turning-point problems. 
6. Path following in bifurcation problems for variational inequalities. 

2. An Algorithm for Variational Equalities. As indicated in the introduction, from 
now on we shall assume that the functionals f and g are either defined on a 
finite-dimensional Hilbert space H or a problem of the class described above is 
discretized by, for example, a finite-difference or a finite element method yielding 
functionals fh, gh defined on a space Hh, where h denotes the discretization 
parameter. We shall assume that Hh may be identified with Euclidean n-space, and 
we shall omit the subscript h. 

In this and the following section we treat the case K = H in which inequality (1.2) 
reduces to the variational equality. 

(2.1) Xo(vg(uo), u) = (vf(uo), u) Vu E H. 

The original problem is the determination of critical points uo of the functional f 
with respect to level sets (1.1) of the functional g. 

We now make a few general assumptions on f, g, and we refer to the last sections 
where the examples show that the resulting class of problems covers interesting 
applications. Let the functional f be twice Frechet differentiable on H, and let g be 
of the form 

(2.2a) g(x) 
- 

'(Bx, x), x E H, 
where B: H -- H is a linear, symmetric and positive definite operator. The elements 
of the finite-dimensional space H will henceforth be denoted by x, y, etc. 

Let there exist a constant M = M(p) > 0 such that 

(2.2b) 0 < (Vf(x + y)- vf(x), y) < MIIyI2 Vx Es,y ES21,,y# , 

and for simplicity let M be chosen such that the following inequality also holds: 

(2.2c) (vf(y), y) < MIIyII2 Vy ES as. 
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Here we have used the notation Sp = {x E H, g(x) < -2p2}. The norms used here 
and in the following are the Euclidean norm for x E H and the spectral norm for 
matrices A E L(H). 

If (2.2a), (2.2b) and 

(2.3) f() =, vf(o) = O 

are satisfied, then (2.1) always has the trivial solution, and it is well known that 
branches of solutions exist bifurcating from the eigenvalues of the linearized 
problem (cf. [12] and the references in [13]). 

We now present an algorithm for the determination of local maxima of f on the 
level surfaces (1.1) which is well defined under the assumptions of Theorem 2.10 
below. 

The algorithm for variational equalities. Let x1 6 aSp, p > 0, be arbitrary. 
1. For k = 1, 2,. .. compute 

(2.4a) Pk -Hkrk, 

where (formally) Hk is the n X n principal submatrix of the inverse of 

(2.4b) D Fk-[ kB -Bxkj 

and we have used the notation rk = Vf(xk), Fk = V2f(xk), Xk =TrXk/P. 

2. Determine a steplength ak = 2-', where 

(2.4c) j min{i E N U {to,f(xk + 2kPk) -f(xk) 2 2prk} 

3. Set 

(2.4d) Xk+1 P(Xk + akpk)/IIXk + akPkIIB, 

where IIB (,)/2 and ( , )B denotes the scalar product induced by B. 
Remark 2.5. Algorithm (2.4) consists of a damped Newton step for the solution of 

the Kuhn-Tucker equations 

(2.6) Vf(x )- XBx = 0, - xTBx + p2/2 = 0, 

for updating Xk starting from x = Xk, X = Xk and a subsequent normalization to 
return to the level surface asp. The Langrange multiplier is updated by Ak+l 

rk+lXk+1/p2. Hence our method corresponds to the inverse iteration method with 
Rayleigh-quotient shift, while the Picard iteration considered in [6] corresponds to 
simple inverse iteration. For the matrix eigenvalue problem, i.e. f(x) = '(Ax, x), A 
symmetric, it is well known that the latter process exhibits linear convergence [22, p. 
619] while the first possesses locally cubic convergence properties ([22, p. 636], see 
also [18]). In the generalization to the nonlinear case considered here and in [6], the 
order stays the same for the ordinary inverse iteration while algorithm (2.4) will be 
shown to be quadratically convergent. 

Remark 2.6. In order to show how a continuous analog of algorithm (2.4) would 
look, we derive it for the class of problems from [6]: 

(2.7a) XL(u) = T(x, u(x)), x E R, u(x) = 0, x E a29 
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where L(u) = 
-a,(a,k(x)akU(x)) + a(x)u(x) with suitable assumptions on a, a1k, f 

(and using summation over repeated indices in the definition of L). We add the 
normalization 

(2.7b) (u, u) (L(u), u)= p2, 

where < > denotes the L2-scalar product on U. If now, for simplicity, we consider 
only the undamped case, a function Uk satisfying (2.7b) would be replaced by 

Uk+I p(uk + Pk)/Uk + Pkll 11 K11 =( , )12 

wherePk is the first component of the solution v= (vl, v2) of 

(99u(x, Uk(X)) - XkL) v(x) - v2L(uk(X)) = -(X, Uk(X)), x E Q 

vl(X) = 0, x E au, (Uk, VI) = O, Xk =((, Uk), Uk)/p, 

which may be obtained by determiningYk, Zk from the two boundary value problems 

(2.8a) ((qu(x, Uk) - XkL)yk(x) -L(uk(x)), x E Q yk(X) = 0, x aQ, 

(2.8b) (q9u(x, Uk) - XkL)Zk(x) -q9(x, Uk(X)), x E , zk(x) = 0, x E aQ, 

and then setting 

(2.9) Pk Zk (Uk, Zk)(Uk, Yk) Yk- 

We observe, however, that the operator on the left-hand side of (2.8) becomes 
singular at a turning point and that Eq. (2.8a) cannot be satisfied there. Hence we 
are treating problem (2.7a) with a special form of the normalization as used in [8]. 
Then we apply a Newton step, however only for updating Uk. The normalization 
(2.7b) is responsible for some simplifications in (2.8), (2.9) compared with other 
choices. 

We now state a local convergence theorem for algorithm (2.4). By {x}' we denote 
the orthogonal complement of x E H with respect to tie scalar product (, )B. 

THEOREM 2.10. Let the assumptions (2.2) be satisfied for problem (2.1), and assume 
that xo is a solution of (2.1) for the parameter Xo and that F(xo) - XoB is negative 
definite on {x0}' . For xl sufficiently close to x( the sequence {Xk}, k = 1,2,...,I 
generated by (2.4) converges to x( and. iff E C3(U(Xo)), then the asymptotic (Q-)order 
of convergence is two. 

Remark 2.11. We have formulated this local theorem for the unrestricted case 
since the numerical applications we will treat in Sections 5 and 6 essentially need 
only this result. The theorem will be proved in the next section. 

3. Convergence Proof. For the proof of Theorem 2.10 we need the following 
lemma. It suffices to prove it in the case p = 1. 

LEMMA 3.1. Under the assumptions of Theorem 2.10 let U(xo) be a neighborhood of 

xo such that for all x C U(xo) and X(x) =Vf(X)TX/p2 

(3.2) yT(F(x) - X(x)B)y < -_11y112, B > 0, Vy C {x} 

Let xl C U(xo) be chosen such that {x C aSp, f(x) f(x )} C U(xO). If Xk p is 

generated by algorithm (2.4) with 

(3.3) ak 13/(2Mcond(B)), 
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where cond(B) = iIBIJIIB-'I 11, then Xk+ I 3 asp and 

3.4) f(Xk+ 1) - AXk) -> CII Pki 1 " C > 0. 

Proof. Consider the case p = 1. Xk+I E aS. is valid by construction of the 
algorithm. The following analysis is similar to that in the proof of Lemma 4.1 in [13] 
and is therefore given in concise form. 

For a suitable T 6 (0, 1) we have from (2.2b) 

(3.5) f(xk?I) I f(xk) k -T '(- Vf(Xk + T(Xk?, - Xk)) 

+vf(xA ), T(xA+ Xk)) + (Vf(Xk), Xk?+ xk) 

2 -Mxk+1 - Xkll2| +(vf(xA), Xk?I - Xk) 

2MIISB '(Xk + YA, XA ?I - 
XA)B,. Yk = B-'rk1(2MIIB-1JJ). 

Hence 

f(xA+?) -f(xA) - d,(x, +-yA, xA + apA - 
llxA + apApIIBXA)B, 

where dk = 2MII B-'II /IIxA + aA P II B > 0, and we show next that the second term 
on the right-hand side is nonnegative. This condition may be rewritten as 

(3.6) (1 - IIXA + aAPAIIB)(1 + (YA XA)B) + a,A(_YA PA)B 0. 

Writing the inverse of DA in (2.4b) as 

(3.) D-1 [HA bA] 

b[ qA] 

we deduce that 

(3.8a) HA (FA - XA B) - bA XTB ,E, 

(3.8b) HA BxA 0, 

where E,, is the identity matrix on R". Hence (xA, P )B = 0, and for y -Hkz we 
have (y, xA)B = 0 and from (3.2), (3.8a) ylYll'2 -< J-1(y, z). Applying this result for 
z = rA, we derive 

(3.9) (IPAIl < PA, r) 
and (3.8b) gives 

(3.10) IXA + aA PA1 1 + a2IIBII IIpA I?2. 

From (2.2c) we conclude that (y X, )B , '. Hence 

(1 + (YAh XA )B)2 < 2(1 + (yA, XA )B) + IIPAIKI22/ (4M211B 121 IB11), 
the last term being nonnegative, and thus 

(1 + ak IPkII2IIBII)(1 + (Yk, Xk)B) ( + (Yk, Xk)B + kllPkI12I / (2MIJB 

from which now (3.6) immediately follows by taking square roots and using (3.9), 
(3.10). 

Combining (3.5), (3.6), we obtain with (2.2b) the inequalities 

(3.11) f(Xk+l) -f(Xk) > (rk, Xk+I 
- Xk) ' MIIXk+l - XkI 2> 0. 
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In order to show (3.4) we estimate, using (3.9), (3.10) and (2.2c), 

(3.12)(rk, Xk? - Xk) (rk, Xk)( - IlXk + akPkIIB) + ak(rk, Pk) 2> aklIPkI I 
IIXk + akPkIlB (2L) 

where L is an upper bound for IlXk + akpkIlB on U(xo). The proof of the lemma is 
now complete. O 

In order to justify the choice of the Goldstein-Armijo stepsize rule instead of the 
constant ak as in Lemma 3.1, we note that it may be shown as in [13] that 

IIXk+1 - (Xk + akPk)II ?(k 

while (3.11), (3.12) yield an estimate linear in ak. The proof of the first part of 
Theorem 2.10 is now an immediate consequence of (3.4), (3.1 1). 

It remains to show the asymptotically quadratic convergence. In U(xo) the matrix 
Dk in (2.4b) is regular as a 'bordered' matrix. We next recall (cf. [6]) the expression 
for the derivative of an iteration function 4( as in (2.4). 

The derivative of 4>(x) = Y(X)/IIY(X)IIB, y Cl, is given by 

(3.13) =D (x) - PyY'(x)/I1y(x)IIB, 

where P, = En - zzTB/IIzIZ12 is the orthogonal projector on {z}'. 
Now we show 4D'(xo)Px. = 0 from which the quadratic convergence follows using 

Lemma 10.1.7 in [16]. 

LEMMA 3.14. Under the assumptions of Theorem 2.10 the iteration function 4( of 
algorithm (2.4) satisfies 

D`(xO)P,O = 0. 

Proof. We note that in (2.4c) j = 0 will be chosen asymptotically and that then 
4>(x) may be rewritten as (cf. (3.8b)) 

D(X) = PY(X)/IIY(X)IIB, y(x) = X-H(x)(vf(x) -X(x)Bx). 

The regularity of Do. (3.8a) and Lemma 10.2.1 in [16] yield 

y'(xo) = En- Ho(FO - XOB) =-boxTB. 

y(xo) = xo and (3.13) then finally give 

D'(xo )Pxo = -pPxObOxOBPxO = 0. ? 

4. An Algorithm for Variational Inequalities. In this section we consider problem 
(1.2), (1.3). We present a globally convergent algorithm in the sense that it is not 
necessary, as in Theorem 2.10, to choose xl in a sufficiently small neighborhood of a 
local maximum. Thus the following algorithm and theorem also generalize those of 
Section 2. 

We look for local maxima of the functional f defined on H = R over the set 
K n asp, asp as in (1.1), with g as in (2.2a) and K a discrete analogue of (1.3): 

(4.1) K {x GRE , xi >I i E 
JI, xi < 0, i E J2}, 

J1, J2 C {l, . . ,n}, JI = i9. 'nil, f=2 {il )n2l 
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We introduce some further notation (cf. [13]). Let G = (gl,... , I+n2 ), where 

gk= ei,A k = 1,... = 
gn?k =ej 1,... ,n2, en E Rn the ith unit vector. Then K 

in (4.1) may be rewritten as 

(4.2) K= {xER ,GTx,0). 

For any x E RW let I(x) = {i E {1,...,2n}, g7Tx = O), and define G,=(gA,1 
Q, = En- G,G. For x = Xk denote Ik = I(Xk), Gk= GIk and Qk analogously. We 
can now define 

The algorithm for variational inequalities. 
(4.3) Let xl E K n asp be arbitrary. Set k = l and yk = O? k E {t,og} 

1. Determine Ik and Uk = rk -kBXk, Ak = rkxk/p2 . Terminate the iteration if 
GTuk < 0 and IlQkukll = 0. 

2. Compute IUkjI= max{IuklI ,(G/kuk)i > 0) If {(QkUk, rk) <!UkjlllQkUklI and 
-k= 0) or IIQkukll = 0, then set Ik = Ik - {j} and determine Qk. Otherwise set 

Ik = 'I Qk = Qk* 

3. Replace Fk -kB in (2.4b) by Fk -kB -TkEf, where Tk max{0, 8 + ak) 

and ak is the largest eigenvalue of Fk - XkB on {Xk}'l n{x E RW, Qkx = x}, 8 > 0 

a given constant. Compute Pk as the direction vector given by (2.4a) but in the 
variables xki with (Qk)ii 1 (the free variables) only, fixing the others. 

4. Determine the maximal admissible steplength a-k and the steplength &k as in 
(2.4), and set 

Xk+ 1 = p (Xk + akPk)/llXk + akPkI1B, 

where ak = min{ak, &k}. If ak = ak then set Lk+?1 =1, otherwise Lk+?1 =0. Set 
k = k + 1 and go to 1. 

THEOREM 4.4. Let the assumptions (2.2) be satisfied for problem (1.2). Assume that 
the set 

F = {x* E K n asp, G*Tx* ? 0, I1Q*x*II = 0) 

is finite and that G*Tx* < 0 for all x* E F and 0 < 8 < -a* (cf. 3 in (4.3)). Then the 
sequence {Xk}, k = 1, 2, .. ., generated by algorithm (4.3) converges to a point x* E F. 
If f E C3(U(x*)), then the asymptotic (Q-)order of convergence is two. 

We first prove the analogue of Lemma 2.8 in the case p = 1. 

LEMMA 4.5. Let, under the assumptions of Theorem 4.4, xk E K n asp be generated 
by algorithm (4.3) with steplength ak 8/(2Mcond(B)). Then Xk+I E K n asp and 

(4.6) f(Xk+?l) f(xk) A cklmX{Ck pk||| Ukj |}2otherwise, 

where ck = cl > O for ?k+1 = 0 and ck = c2ak, c2 > 0,for yk? 1 

Proof. The proof of (4.6) in the case ,'k = 1 follows closely the lines of the proof 
of Lemma 2.8. It is therefore not necessary here to give the details. We remark only 
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that Pk in (4.3) satisfies 

(4.7) (xk, Pk)B = 0, Qk(Fk - XkB - TkEJO)QkPk -Qkrk 

and the analogue of (3.9) holds with /3 replaced by S. Let now yk = 0 and Ik Ik 

Since the analogue to (3.8b) shows that Qkrk in (4.7) may be replaced by Qkuk, 

which contains the component ukj' the assumptions of Theorem 4.4 assure that for a 
positive constant CII|PkI > 11QAukil I UkJ I. This proves (4.6) for Ik k 'k* If 'k = Ik 

then the strategy in 2. of (4.3) guarantees that IIQkrkll 'l UkJ I while (4.7) gives 

CIIPkll > IIQkrkII. This completes the proof of the lemma. C 
The proof of the first part of Theorem 4.4 need also not be given in detail here 

since it follows from combining the arguments of the proofs of Theorem 2.10 above 
and Theorem 3.1 in [13]. This shows that, for all sufficiently large k, Ik= I(x*), 
x* E F and Tk = 0. Thus the steplength ak will finally be chosen equal to 1, and the 
asymptotically quadratic convergence then follows as in the proof of Theorem 2.10. 

Remark 4.8. For a practical application of algorithm (4.3) a way of choosing the 
regularization parameter Tk has to be given. For a more general class of optimization 
problems a procedure for this purpose is described in [20]. 

5. Path Following in Turning-Point Problems. In this section we consider the same 
class of problems as in [6], namely the nonlinear eigenvalue problem (cf. (2.7a)) 

(5.1) AL(u) = 9)(x, u(x)), x E Q, u(x) = O, x E au, 

where A e R, A > 0, and L is a uniformly elliptic formally selfadjoint differential 
operator on the bounded domain Q C RW. Generalizations, for example, to higher 
order differential operators or other boundary conditions are possible. Conditions 
(2.2) have to be satisfied in the continuous case and for the discretization. We shall 
restrict ourselves to the example (cf. e.g. [4]) 

(5.2) L(u) = -Au, 9)(x, u) = exp(u/ (I + EU)), E ,> 0, 

and N = 2. For E = 0 (5.1), (5.2) is usually called Bratu's problem. 
There has been a great interest in the numerical solution of similar problems, see, 

for example, the papers mentioned in Section 5.6 of [14]. For theoretical results on 
problems of the type (5.1) see, for example, [5], [7], [19]. It is well known that (5.1), 
(5.2) has a solution diagram as shown in Figure 1 in dimensions N = 1, 2. The points 
marked in the figure represent, for E < E*, one or two (quadratic) simple turning 
points and, for E = E*, a nonsimple turning point. 

The problem of following the solution branch and also the problem of determin- 
ing the simple respectively the nonsimple turning points numerically presents in 
principle no difficulties (cf. [2], [14], [21]). However, using e.g. Keller's pseudo- 
arclength-continuation technique the stepsize has to be suitably controlled near the 
limit point, and the question of efficiency arises in particular if the linear systems are 
solved by elimination methods. In [2] a multigrid (MG)-method was suggested for 
the approximate solution of (5.1), (5.2). The pseudo-arclength normalization was 
added (cf. [8]), and the resulting system was solved by block-elimination as utilized 
also in Remark 2.6. Hence a differential operator was discretized, which becomes 
singular in the turning point. The corresponding singularity of the discrete operator 
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on one of the grids used in the MG-method made it necessary to modify this 
algorithm considerably in order to be able to pass the limit point. These modifica- 
tions may not have been necessary, if instead the inflated system would have been 
treated directly. The resulting system has a regular matrix in the neighborhood of 
solutions. However, the matrix is not definite on the whole space, so that is is open 
how the MG-method would perform. This question will be investigated in the future. 
For an application of MG using Rayleigh-quotient iteration to the linear eigenvalue 
problem cf. [ 1]. 

IJvII i (=0 ''*(f 

A-1 

FIGURE 1 

Solution diagram for problem (5.1), (5.2) for different values of E 

It is a well-known procedure to use a norm of u as a continuation parameter, and 
a numerical method for this is, for example, the Picard iteration of [6]. The 
algorithms of Sections 2 and 4 can be used analogously. They have the advantage of 
quadratic convergence, while Fast-Poisson-Solvers in the special case L = -A could 
in general not be utilized. It should, however, as pointed out above, be possible to 
use MG-algorithms. 

We compare now algorithm (2.4) and that of [6] on the above problem. Since it is 
not our aim to compute the solution to a high accuracy, we have chosen a low order 
finite element method on a relatively coarse mesh. Problem (5.1), (5.2) may be 
written in the variational form 

(5.3) X(vg(u), v) = (vf(u), v) Vv E Ho(&2), 

g(u) = f(U2 + U2)dxdy, f(u) = exp(u/ (1 + eu)) dx dy. 

S was taken as the unit square and linear finite elements were used on the standard 
triangulation obtained from a square mesh with meshwidth h. f was evaluated by 
numerical integration with weights h2/6 and the midpoints of the edges of a triangle 
as integration points. This gave rise to the usual five-point difference matrix B and a 
seven-band matrix A. Table 1 shows the results for two values of E < E*. 
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TABLE 1 

Computed points on the solution branch for problem (5.1), (5.2) near the turning points 
and necessary number of iterations for different algorithms. 

E P A-'p Alg(2.4) Picard 

0.0 30 6.712380 4(4) 9(17) 
0.0 36 6.910483 2(3) 8(16) 
0.0 42 6.882701 2(3) 8(16) 
0.0 48 6.681038 2(3) 9(16) 
0.2 72 9.278187 3(3) 10(18) 
0.2 80 9.291875 2(3) 9(18) 
0.2 88 9.265477 2(3) 9(18) 
0.2 96 9.211836 2(3) 8(18) 
0.2 360 7.341984 2(3) 9(20) 
0.2 440 7.237885 2(3) 9(20) 
0.2 520 7.230358 2(3) 9(20) 
0.2 600 7.285922 2(3) 8(20) 

For either method the number of iterations is given required to compute the 
solution to about eight decimal places with the number of iterations for maximal 
accuracy (double precision FORTRAN on an IBM 370-168) given in parentheses. 
The starting vector for p = 30 and for both algorithms was x0 = e/llellB, e- 
(1, .. .)T E Rn, n = ((1 - h)/h)2, h = 1/12. The approximate solution for each 
p-value was then, after normalization, used as starting guess for the next p(e)-value. 
Algoritm (2.4) could in each case be used with ak= 1. The linear system for the 
symmetric but in general indefinite matrix Dk in (2.4b) may be solved, for example, 
by any conjugate gradient method applicable to such problems (see, for example, 
[3]), and even special elimination procedures are easy to derive. We used algorithm 
SYMMLQ [17] which without any scaling or preconditioning needed about 35 
iterations to solve the system in each step. 

The iterates of our algorithm converged quadratically from the beginning. The 
steps in p for (2.4) could be chosen large as the results show, but not arbitrarily 
large, while the Picard iteration did not seem to have similar restrictions. So an 
alternative to damping in (2.4) could be to first execute some Picard steps and then 
to use algorithm (2.4) with stepsize 1. 

In this section we have seen that algorithm (2.4) may be used very efficiently in 
the following of solution branches for problems of the type (5.1). For more general 
bifurcation problems a natural procedure would be to use alternately continuation 
with respect to A or to the norm of x (cf. Section 6) switching when the steplength in 
one of the methods has to be chosen below a suitable tolerance. The use of 
MG-methods may be possible, however, conjugate gradient algorithms provide an 
efficient and generally applicable procedure for the solution of the linear systems. 

6. Path Following in Bifurcation Problems for Variational Inequalities. In this 
section we again restrict the numerical computations to a simple but illustrative 
example. We apply algorithm (4.3) to the discretization used in [13] of the buckling 
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problem for an axially compressed beam with lateral supports. The variational 
inequality is 

(6.1) X(vg(u), u-u0) > (vf(u), u-u0) Vu E K, 

f(U) = (I + U,2)1/2 _ 1] dx, g(u) = 
I I 

U"/2 dx , 

K = {u E Ho[0, 1], u(C) > 0, u(D) < 0). 

Hermite cubic finite elements on an equidistant grid of width h and suitable 
numerical integration are used yielding the discrete functionals fh gh (Cf- [13]). Of 
physical interest are the solutions Uh branching from the trivial solution at the largest 
eigenvalue Ahl with eigenvector Uhl of the linearized problem. 

To our knowledge no reasonably efficient algorithms are available which are 
globally convergent to Uhl if K 7# H, except in special cases (see, for example, 
Corollary 4.2 in [13]). In [10] a constructive existence proof for the restricted 
solutions has been given, in which they are obtained as bifurcating solutions of a 
penalized version of the unrestricted problem (K = H). In that paper, however, only 
eigenfunctions can be determined corresponding to eigenvalues which are smaller 
than the largest eigenvalue of the unrestricted problem for which the corresponding 
eigenfunction with suitably chosen sign is in the interior of K. Hence the physically 
interesting case is excluded. 

We assume now that (Ahli Uhl ) and the corresponding set of active constraints are 
known and try to follow the branch bifurcating from (Ahl, 0). In [13] it was 
suggested that augmented Lagrangian methods could advantageously be used for 
this purpose. The following results, however, show that algorithm (4.3), which here 
essentially reduces to (2.4) in the subspace of the free variables, is the most efficient 
method among several algorithms. We compared it with SALMNA, an augmented 
Lagrangian-type algorithm using Newton's method from the NPL-library and also 
part of the NAG-library. Another natural candidate for a comparison is A-continua- 
tion (see, for example, [8]) which in this case should not be inferior to pseudo- 
arclength-continuation: 

Let (u?, A0) on the branch be given. Compute UA(U?, A0) from 

(F(u?) - AB)ux = Buo. 

Then set uo = u? + (A- X0)u and for k = ,1,. ... iterate according to 

(F(uk)- AB)(uk+l - Uk) = -vf(uk) + ABUk. 

Hence after an Euler predictor step several Newton steps are executed to compute 
the solution for the given A. Finally, Picard iteration is applied here, too. 

We have restricted the computations to the problem (6.1) with C= {1/3), 
D = {2/3). Largest eigenvalue and corresponding eigenfunctions for this case, there 
are two symmetric eigenfunctions, have been computed analytically in [13]. Table 2 
shows some typical results for h = 1/24. Again the number of iterations is given 
required to compute the solution to eight decimal places, respectively, to the 
maximal attainable accuracy. For SALMNA the numbers represent for the latter 
case only the number of second order derivative (function value and first order 
derivative) evaluations. 
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TABLE 2 

Computed points on the bifurcating branch for problem (6.1) 
and iteration counts for different algorithms. 

p Xhp Alg. (4.3) Picard X-cont. SALMNA 
1 .144644E - 1 2(3) 14(28) 5(6) 2(9) 
2 .139243 E - 1 2(3) 15 (28) 4(5) 2(8) 

10 .799582 E - 2 3 (4) 16(30) 5 (6) 9(14) 
100 .103968 E - 2 3 (4) 14 (28) 7 (8) 70 (104) 

For each algorithm the normalized eigenfunction of the linear eigenvalue problem 
was used as starting solution for p 1, and the corresponding Rayleigh-quotient 
was used as starting value for the Lagrange multiplier in SALMNA. Then the 
solutions on the branch for the given sequence of p-values were computed by 
continuing analogously to p = 2, 10, 100. The corresponding X-values were used as 
the sequence for the X-continuation. 

The results show that our method is also very efficient for following bifurcating 
branches of variational inequalities. The behavior of the Picard iteration is similar to 
that in Section 5, while for X-continuation the convergence of the Newton iterates 
was not quadratic from the start, which resulted in considerably more iterations 
especially for larger p-steps. The iteration counts for this method in Table 2 do not 
include the predictor step. Finally, the performance of the general purpose routine 
SALMNA suggests that augmented Lagrangian methods are not able to compete 
with algorithm (4.3) for the special class of optimization problems considered here. 
By modifying the subroutine suitably it should, however, be possible to reduce the 
extremely high expense needed for larger p-steps. 

For the solution of the linear systems again SYMMLQ was used, which even after 
a scaling of the sytem needed more than n iterations. The number of iterations, 
however, was only slightly larger than for the solution of the system in the Picard 
iteration, which has a definite matrix. So this difficulty is caused by the unfavorable 
eigenvalue distribution for this fourth-order problem and, if conjugate gradient 
methods are to be used for the linear systems, a suitable preconditioning should be 
chosen to further reduce the necessary work. 
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